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Abstract

The motion of a bubble within a liquid-®lled Venturi is computed using a simple force balance which
considers pressure forces, added mass, and steady drag acting on the bubble. The bubble is small
compared to the pipe radius, and interactions between the bubble and the pipe wall are neglected.
Interfacial tension is assumed to be su�ciently strong that the bubble remains spherical. The liquid
velocity is assumed either to be a simple one-dimensional ¯ow with velocity inversely proportional to
the pipe cross-sectional area, or to be an axisymmetric potential ¯ow. A bubble on the axis of the
Venturi remains on the axis. In the absence of drag, the bubble moves through the Venturi more rapidly
than the liquid. If drag is small, the model predicts that the bubble becomes trapped within the Venturi.
If drag is large, relative motion between the liquid and the bubble is suppressed, and the bubble ¯ows
through the Venturi without oscillation. O� the axis, a bubble in the converging section of the Venturi
accelerates towards the centreline more rapidly than the liquid. In the absence of drag, if bubbles are
distributed uniformly across the cross-section of the pipe upstream of the Venturi, they will be
concentrated close to the axis in the throat. The bubbles eventually cross the axis and hit the far wall of
the Venturi, at which point trajectory computations were stopped. If drag acts on the bubbles, the
resulting combination of oscillatory axial motion and radial motion causes the bubbles to move towards
the walls of the Venturi, where the potential ¯ow is fast and pressures are small. Order of magnitude
estimates suggest that such oscillations would not be observed for air bubbles in water, since the bubbles
would be deformed and drag would become large. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Venturi is a robust method for measuring the ¯ow of single-phase ¯uid of known
density at high Reynolds numbers. Multiphase ¯ow measurement is more di�cult. The density
of a gas±liquid mixture depends upon the volume fraction of gas, and the velocity of gas
within the Venturi is likely to di�er from that of the liquid. Recent practical ¯ow measurement
devices are reviewed by Thorn et al. (1997); theoretical background is provided by Boyer and
Lemonnier (1996).

The density of the gas is less than that of the liquid, and so the gas will accelerate
more than the liquid in the converging section of the Venturi (Muir and Eichorn, 1963;
van Wijngaarden, 1972). However, away from the centre-line the gas and liquid accelerate
not only in the axial direction, but also radially. Any relative motion in the radial
direction will lead to a non-uniform distribution of gas across the Venturi, and this may
a�ect the di�erential pressure measured between the entrance to the Venturi and the
throat. The aim of this paper is to predict trajectories of individual bubbles in an
idealised Venturi. This bounded, non-uniform geometry is complex, and in order to
simplify the problem the liquid velocity will be assumed either to be uniform across the
pipe cross-section, or to be an irrotational potential ¯ow. We shall neglect any changes to
the liquid velocity caused by the presence of the bubble.

Previously published studies include those of Kuo and Wallis (1988), who looked at
one-dimensional motion of a bubble in a slot-shaped nozzle and compared experimental
results against a model which included buoyancy, steady and unsteady viscous drag,
added mass (acceleration reaction) and pressure forces. Similar computations in a
converging nozzle are reported by Kowe et al. (1988), who used a steady drag law. Kim
and Prosperetti (1992) simulated the motion of one or more spheres in potential ¯ow
within a Venturi: they included interactions between the spheres, and between the spheres
and the walls of the Venturi. The e�ect of gravity was investigated, but not that of drag.
They noted that a sphere o� the axis of the Venturi could be de¯ected towards the
centreline and would eventually hit the far wall of the pipe. The initial motion away from
the pipe wall, towards the centre-line, was also studied by Oldenziel (1979), who was
concerned that this would a�ect the gas volume fraction in samples taken at the Venturi
wall. Sherwood (2000) considered potential ¯ow around a deforming bubble on the axis
of a Venturi in the absence of drag or buoyancy forces.

We shall assume that changes in pressure as the liquid passes through the Venturi are small
compared to the ambient pressure, so that variations in the bubble size may be neglected. Such
variations were included in computations of cavitation bubble trajectories by Johnson and
Hsieh (1966).

In Section 3, we ®rst examine a one-dimensional model in which only the added mass and
pressure forces are considered, and then discuss the e�ect of including a (steady) drag force. In
Section 4, we consider irrotational ¯ow of inviscid liquid through a Venturi, and compute
trajectories of bubbles through the Venturi. In Section 5, we consider the e�ect of drag on
trajectories through the Venturi.
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2. The forces acting on the bubble

We consider an incompressible, spherical gas bubble of radius R0, volume V � 4
3pR

3
0 and

density rg moving with velocity vb in liquid which (in the absence of the bubble) moves with
velocity ul: The liquid is incompressible with density rl and viscosity m: The forces acting on
the bubble are discussed by Batchelor (1973) (p. 409), and Auton et al. (1988). The force due
to the pressure ®eld in the liquid in the absence of any bubble is

Fp � Vrl

Dlul

Dt
�1�

where Dlul=Dt � @ul=@t� ul � rul evaluated at the instantaneous position of the bubble. The
added mass force (acceleration reaction) is

Fa � CmVrl

�
Dlul

Dt
ÿ dvb

dt

�
: �2�

The coe�cient Cm � 1
2 in unbounded ¯uid, but increases when the bubble is inside a liquid-

®lled pipe (Smythe, 1961; Cai and Wallis, 1992). We shall later assume that the bubble radius
R0 is small compared to a typical pipe radius a, so that the e�ect of the pipe is negligible and
Cm � 1

2 :
We shall assume that the axis of the Venturi is vertical, as is usual in practical devices in

order to avoid strati®cation due to buoyancy. Flow is upwards in the direction Ãx, so that the
buoyancy force on the bubble is

Fb � ÿ�rg ÿ rl�VgÃx �3�

where g is the acceleration due to gravity.
Kuo and Wallis (1988) included both steady and unsteady drag forces: we shall ignore

unsteady drag. The steady drag Fd, reviewed by Clift et al. (1978), is sometimes written in the
form

Fd � 1

2
CdrlpR

2
0 jul ÿ vbj�ul ÿ vb� �4�

where the drag coe�cient Cd depends on the bubble Reynolds number

Reb � 2R0rljul ÿ vbj
m

: �5�

In most of the results presented here, we follow Kowe et al. (1988) and use the Levich formula
for steady drag on a spherical bubble at high Reynolds number (Batchelor, 1973, p. 368)

Fd � 12pmR0�ul ÿ vb�, �6�
which corresponds to a drag coe�cient

Cd � 48=Reb: �7�
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However, the bubbles are unlikely to remain spherical when the ¯ow rate is high. In Section
3.4 we give some order of magnitude estimates for typical velocities, and consider another
force law in order to see how the choice of drag law a�ects the results.
The lift force due to vorticity is

Flv � rlVClv�ul ÿ vb� ^ �r ^ ul� �8�
where the lift coe�cient Clv � 1

2 in unbounded ¯uid. This force will be zero in the irrotational
¯ows considered here. However, numerical computations by Magnaudet and Legendre (1998)
have shown that even in the absence of vorticity a sphere is subjected to a lift force in a ¯ow
with strain rate

S � 1

2

ÿ
rul � �rul�T

�
: �9�

Magnaudet and Legendre propose a lift force of the form

Fls � 2VrlCls�ulÿvb� � T �10�
where

T � Sÿ �ul ÿ vb� � S � �ul ÿ vb�
jul ÿ vbj2

I �11�

and

Cls � ÿ1:2
ÿ
Reb

�ÿ1=3
Reb > 100, �12�

though in practice a bubble will no longer be spherical at su�ciently high Reb: We assume that
the various forces acting on the bubble may be added linearly (e.g., Climent and Magnaudet,
1997; Hunt et al., 1997) so that the equation of motion for the bubble is

rgV
dvb

dt
� Fp � Fa � Fb � Fd � Fls: �13�

We scale all velocities by U (which will later be taken as the liquid velocity at the entrance to
the Venturi), and all lengths by a, (which will later be taken as the radius of the pipe at the
entrance to the Venturi). Time is scaled by a=U: We assume that the liquid ¯ow is steady, with
Reynolds number

Re � aUrl

m
: �14�

The equation of motion for the bubble (13) becomes

dvb

dt
�Maul � rul ÿMbFr ÃxÿMd�vb ÿ ul� �Mls�vb ÿ ul� � T �15�

where
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Fr � ga

U 2
�16�

is a Froude number, and the other coe�cients are

Ma � rl�1� Cm�
rg � rlCm

, Mb �
rg ÿ rl

rg � rlCm

, Md � 9rlÿ
rg � rlCm

�
ReR2

0

, Mls � ÿ2rlCls

rg � rlCm

: �17�

Note that the bubble radius R0 which appears in the expression for Md has been non-
dimensionalised by a. We now set the gas density rg � 0 and take Cm � 1

2, so that

Ma � 3, Mb � ÿ2, Md � 18

ReR2
0

, Mls � 4:8

�Reb�1=3 : �18�

In the results to be presented here we set Fr � 0, so that the e�ects of gravity are neglected.
Similarly, the lift force Fls will be set to zero, except in Section 5.2 where it will be shown that
the e�ect of Fls is typically small. Thus, we shall investigate how trajectories depend upon Md,
the ratio of drag to inertia.

3. A simple one-dimensional model with drag

3.1. The Venturi geometry

Fig. 1 shows an axisymmetric Venturi with inlet diameter 2a: we non-dimensionalise all
lengths by a. The pipe is cylindrical, with radius

Rp �

8>>>>>>>>>>><>>>>>>>>>>>:

1 0 < x < x1

1ÿ �xÿ x1��1ÿ b�
x2 ÿ x1

x1 < x < x2

b x2 < x < x3

1ÿ �x4 ÿ x��1ÿ b�
x4 ÿ x3

x3 < x < x4

1 x4 < x < x5,

�19�

Fig. 1. A bubble at x � x b in a Venturi.
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where b is the non-dimensional radius of the Venturi throat and x the distance along the axis.
In all the work presented here we shall assume that b � 1

2, x1 � 3:0, x2 � 5:7, x3 � 6:7, x4 �
10:5: This corresponds to an ISO standard Venturi (British Standards Institution, 1997) with a
218 converging section and 158 diverging section. The diverging section is longer than the
converging one in order to reduce separation and hence total pressure loss, but separation will
not be completely eliminated. We shall ignore separation: results obtained for an even longer
diverging section (in which e�ects of separation should be reduced even further) are
qualitatively similar to those presented here.

3.2. Uniform velocity across cross-section: Levich drag

In this section, we follow Kuo and Wallis (1988), Kowe et al. (1988) and Sherwood (2000)
and consider a one-dimensional model for the motion of the bubble. Like Kowe et al. we
assume that the ¯uid velocity is uniform across the cross-section. We non-dimensionalise all
velocities by the velocity U at the entrance, so that the dimensionless liquid velocity is

ul � Rÿ2p : �20�
Time is non-dimensionalised by a=U, densities by rl and pressures by rlU

2:
The lift force is identically zero and we neglect buoyancy, so that the governing equation for

the motion of the bubble centre xb�t� becomes

d2xb

dt2
� 3ul

dul

dx
ÿMd

�
dxb

dt
ÿ ul

�
: �21�

We assume that upstream of the Venturi the bubble moves at the same velocity as the liquid,
and we take as initial conditions

xb � 1, vb � dxb

dt
� 1 at t � 0: �22�

In the limit Re41, drag can be neglected and Eq. (21) may be integrated:

v2b �
�

dxb

dt

�2

� 3u2
l ÿ 2, �23�

a particular case of a result given by Kowe et al. (1988) (Eq. 31 of the reference). In the throat
of the Venturi, if b � 1

2 then ul � 4 and vb � 6:78: Sherwood (2000) compares the prediction
(23) with numerical computations of potential ¯ow around a bubble on the axis of a Venturi,
and discusses the approximation of uniform ¯ow (20) and the approximation of the added
mass coe�cient by its value Cm � 1

2 in unbounded ¯ow.
The velocity (23) is shown as a function of position in curve (a) of Fig. 2. The deceleration

of the bubble in the diverging section of the Venturi is equal to the acceleration in the
converging section, so that the bubble emerges from the Venturi with the same velocity as the
liquid. The bubble moves faster than the liquid in the throat, so that if a small amount of drag
is introduced the bubble slows down. After decelerating in the diverging section, the bubble
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emerges from the Venturi moving more slowly than the liquid. It subsequently speeds up, due
to drag, and regains the velocity of the liquid. This is shown in curve (b) of Fig. 2 for the case
Md � 0:056:
If drag is increased even more, the velocity at the end of the throat is su�ciently small such

that the adverse pressure gradient in the diverging section brings the bubble to a halt and then
reverses its velocity. Oscillations are predicted, as shown in Figs. 3 and 4. Increasing the drag
further increases the rate of decay of the oscillations and at Md � 2:92 (Fig. 5) the oscillations
are heavily damped. Similar oscillatory behaviour has been previously observed in
computations by van Wijngaarden (private communication).
If drag is large, the bubble moves with the liquid, so that vb1ul and no oscillations occur.

The damped oscillations of Fig. 5 disappear if Md is increased to 2.93, as shown in curve (c) of
Fig. 2.
A steady solution of Eq. (21) with the bubble at a ®xed position xb is possible if

dul

dx
� ÿMd

3
�24�

i.e. if

1

R3
p

dRp

dx
� Md

6
: �25�

The left-hand side of Eq. (25) takes its maximum value bÿ3�1ÿ b�=�x4 ÿ x3� at the start of the
diverging section. The minimum value, at the end of the diverging section, is �1ÿ b�=�x4 ÿ x3�:

Fig. 2. The velocity vb of the bubble as a function of position x. (a) Md � 0; (b) Md � 0:056; (c) Md � 2:93:
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Fig. 3. The position x b of the bubble as a function of t. Md � 0:18:

Fig. 4. The velocity vb of the bubble corresponding to the results of Fig. 3.
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Thus, when b � 1
2 and x4 ÿ x3 � 3:8, a steady solution might be possible over the range

0:79 <Md < 6:3: �26�

No steady solution is possible within the converging or straight sections of the pipe.
We now consider a bubble which oscillates close to the end of the throat of the Venturi. We

assume that the bubble velocity is small, so that dxb=dt may be neglected on the right-hand
side of Eq. (21). We take a local coordinate y � xÿ x3 measured from the end of the throat,
so that Eq. (21) becomes

d2yb

dt2
� 3ul

dul

dy
�Md

�
u0 � dul

dy
yb � � � �

�
, �27�

where u0 is the liquid velocity at y � 0 and yb � xb ÿ x3 is the position of the bubble. This
integrates to give

1

2

�
dyb

dt

�2

� 3

2
u2

l �Md

"
u0yb �

�
dul

dy

�
y2

b

2
� � � �

#
� C, �28�

where C is a constant of integration. We now expand u2
l , so that the governing equation

becomes

Fig. 5. The position x b of the bubble as a function of time t. Md � 2:92:
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�
dyb

dt

�2

� 3u2
0 � u0yb

�
6

dul

dy
� 2Md

�
� � � � � C, �29�

where we have neglected terms O�y2
b �: Now

u0 � bÿ2 y � 0 �30�
and

dul

dy
� ÿ 2

R3
p

dRp

dy
� 0 y � 0ÿ �31a�

dul

dy
� ÿ 2

R3
p

dRp

dy
� 2�1ÿ b�

b3�x4 ÿ x3�
y � 0�: �31b�

If an oscillation about y � 0 occurs, dyb=dt � 0 at some point in both y < 0 and y > 0, and by
Eq. (29) the latter requires

6�1ÿ b�
b3�x4 ÿ x3�

>Md, �32�

so that if b � 1
2 , then Md < 6:3 is a necessary (but not su�cient) criterion for oscillation. The

assumption that jdxb=dtj can be neglected compared to ul in Eq. (21) is satis®ed at the turning
points of the oscillation, but is not necessarily satis®ed at intermediate points during the early
stages of oscillation, as can be seen in Fig. 4. Similarly, the expansion of ul and subsequent
neglect of terms O�y2

b � will be a poor approximation initially, when the oscillations are large.
However, if a bubble is trapped the approximations made above become increasingly accurate
as the oscillations decay (Figs. 3 and 4). Full numerical solutions of Eq. (21) with ul � Rÿ2p

predict that a bubble with upstream velocity vb � 1 is trapped by oscillations if 0:0561 <Md <
2:92:
At the sharp corners of the Venturi the pipe radius Rp is continuous, but the derivative

dRp=dx is not. Consequently ul � Rÿ2p has discontinuous derivatives at x2 and x3, so that the
pressure and added mass forces acting on the bubble are discontinuous at these points. This is
clearly seen in the computed bubble velocity vb shown in Fig. 4.
Such oscillations have not (to our knowledge) been observed experimentally, and we should

therefore ask ourselves the reason for this. One obvious problem with the model presented
above is the lack of separation downstream of the Venturi throat. Such separation will reduce
the adverse pressure gradient within the diverging section. The sensitivity of the model to this
e�ect can be tested by setting x4 � 14:9, which corresponds to an ISO Venturi with a 78
diverging section. Oscillations are again predicted by the model over the range 0:0039 <Md <
0:98:
The inclusion of a small amount of buoyancy, directed along the axis of the vertically

oriented Venturi, changes the values of Md for which oscillation occurs, but does not
qualitatively a�ect the results. We show below (Sections 3.3 and 5.1) that oscillations are
predicted for a more realistic velocity ul with continuous derivatives. In Section 3.4, we
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consider deformation of the bubble and consequent modi®cation of the drag law. This turns
out to be a possible explanation for the absence of observed bubble oscillations.

3.3. A liquid velocity with continuous derivatives

The simple one-dimensional model of Section 3.2 uses a liquid velocity ul with a
discontinuous derivative. We shall see in Section 4.1 (Fig. 6) that the potential ¯ow velocity
along the centreline of the Venturi is smooth. It is straightforward to repeat the one-
dimensional analysis of Section 3.2, using a liquid velocity

ul � a0 ÿ a2X
2, �33�

where X � xÿ xm is an axial coordinate measured from the position xm at which ul is greatest.
The equation of motion (21) for the bubble at Xb � xb ÿ xm is

d2Xb

dt2
� ÿ6a2Xb

ÿ
a0 ÿ a2X

2
b

�ÿMd

�
dXb

dt
ÿ a0 � a2X

2
b

�
: �34�

We assume that a2X
2
b � a0 so that Eq. (34) becomes

d2Xb

dt2
�Md

dXb

dt
� 6a0a2Xb �Mda0: �35�

A steady solution of Eq. (35) is possible at Xb �Md=�6a2� and if M2
d � 36a0a2 the neglected

quadratic term in Eq. (34) is small, with a2X
2
b � a0: There are also solutions of Eq. (35) of the

form

Fig. 6. The non-dimensional liquid velocity julj (a) at the wall; (b) along the centreline. (c) The shape of the Venturi.
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Xb�t� � Md

6a2
� est �36�

with

s � ÿ1
2
Md2

1

2

ÿ
M2

d ÿ 24a0a2
�1=2

: �37�

The solution Xb�t� of the linearised equation (35) oscillates when Md < �24a0a2�1=2 and
Re�s� � ÿ1

2Md, so that the rate of damping increases with Md:

3.4. An alternative drag law

We now question the validity of the simple Levich drag law (7) and in the following order of
magnitude estimates we use a tilde to denote a dimensional quantity. If we assume a liquid
¯ow rate of 10 m3 hÿ1 in a pipe of radius ~a � 25 mm, the liquid velocity at the entrance to the
Venturi is ~U � 1:4 m sÿ1. Taking the liquid to be water with viscosity ~m � 10ÿ3 Pa s and
density ~rl � 103 kg mÿ3 leads to a pipe Reynolds number Re � 3:5� 104: The range 0:0561 <
Md < 2:92 corresponds to a range of non-dimensional bubble sizes 0:01 < R0 < 0:1: In the
absence of drag, the maximum non-dimensional velocity of the bubble relative to the liquid is
vb ÿ ul � 2:78: We assume an interfacial tension ~g � 80 mN mÿ1 and we non-dimensionalise
this by ~rl

~U
2

~a to obtain a non-dimensional interfacial tension g � 1:6� 10ÿ3: Hence, the Weber
number for a bubble of radius R0 � 0:01 is We � 2R0�vb ÿ ul�2=g1100: We conclude that the
bubble will not remain spherical (Moore, 1965).
It is far from clear whether the bubble will survive intact, but we assume that it does and in

the absence of any information concerning the bubble shape we adopt the drag coe�cient Cd �
8
3 corresponding to a highly deformed, spherical cap bubble (Clift et al., 1978). If nothing else,
this will at least indicate the sensitivity of the predictions to the choice of drag law. The added
mass of the bubble can be made arbitrarily large if the bubble is deformed into a su�ciently
thin ¯at disc, but we shall keep Cm � 1

2 in order to investigate the e�ect of changing the drag
law alone. Lift forces on a non-spherical bubble will in practice become important, but we
shall ignore these, again in order to investigate drag alone. The equation of motion for the
bubble is still given by Eq. (15), but with Md � 2jul ÿ vbj=R0: Oscillations are obtained over the
range 1:7 < R0 < 71 but we dismiss these unphysical results since the bubbles are larger than
the pipe itself. Thus, once the bubble has deformed the drag will be larger than that predicted
by the Levich law (7) and may be too large for oscillations to occur. In the absence of precise
information about bubble shape it is di�cult to pursue the analysis in more detail, but it seems
likely that the oscillations predicted here would not be observed with gas bubbles in water.
In Section 5.2, we show that even if we could ®nd a ¯uid for which the interfacial tension is

su�ciently strong that the bubble remains spherical, the oscillations predicted using the Levich
law are unlikely to be observed since motion along the centre-line is unstable. Bubbles move
away from the centre-line towards points of low pressure at the walls of the Venturi.
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4. Radial motion of bubbles within a Venturi

4.1. The velocity ®eld within the Venturi

Gas bubbles ¯owing in a ¯uid-®lled circular pipe are unlikely to be distributed uniformly
over the pipe cross-section, even when the pipe is vertical. There is experimental evidence
(Lance and Lopez de Bertodano, 1994; Lopez de Bertodano et al., 1994; Serizawa and
Kataoka, 1994) that bubbles accumulate at the wall when the ¯ow is turbulent, though at high
gas cut (and high ¯ow rate) we expect a transition to annular ¯ow, in which a ®lm of liquid
covers the pipe walls and the gas is concentrated in the centre of the pipe. If the gas±liquid
mixture is inhomogeneous, the pressure distribution in a Venturi will di�er from that within a
homogeneous ¯uid, and hence, the di�erential pressure from the entrance to the throat will
also be modi®ed.
Here we consider how the radial distribution of gas bubbles is modi®ed on passing through

a Venturi. Full potential ¯ow computations of a deformable bubble moving along the
centreline of a Venturi indicate that in the absence of drag, the one-dimensional model of
Section 3 predicts the bubble motion if the bubble remains spherical and R0 � 1 so that Cm �
1
2 : We now consider the trajectories of bubbles which lie o� the axis. In order to compute
bubble trajectories within the Venturi by means of Eq. (15), we require the liquid velocity ®eld
ul�x, r� � �ux, ur, uy� where �x, r, y� are cylindrical coordinates. We assume uy � 0 so that each
trajectory remains in a plane corresponding to constant y � y0 (or y � y0 � p if the bubble
crosses the axis of the pipe). Later ®gures will show trajectories in one such plane, described by
Cartesian coordinates (x, y ). We shall assume ul � �ux, ur� to be potential ¯ow. This neglects
turbulence, and neglects the e�ect of viscosity on the liquid velocity ul even though the e�ects
of viscous drag on the bubble will be included in the trajectory computations. However, this
choice is su�ciently simple to allow our attention to be focussed on the motion of the bubbles,
rather than on the computation of a more realistic liquid velocity ®eld.
The irrotational ¯uid velocity ul can expressed as

ul � rF �38�
where the potential F satis®es

r 2F � 0: �39�
The solution of the Laplace equation (39) can be obtained by means of a boundary integral
technique described by e.g. Jaswon and Symm (1977). If ~F and F are solutions of the Laplace
equation within a domain O with boundary S, then�

O

ÿ
Fr 2 ~Fÿ ~Fr 2F

�
dO �

�
S

�
F
@ ~F
@n
ÿ ~F

@F
@n

�
dS, �40�

where n is the outward facing normal to the boundary S. If we take ~F to be the fundamental
singularity, then
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cF�x, r� �
�
S

�
~F
ÿ
x 0, r 0; x, r

�@F�x 0, r 0 �
@n

ÿ F
ÿ
x 0, r 0

�@ ~F�x 0, r 0; x, r�
@n

�
dSx 0 �41�

where c � 1 for all points within O, c � 1
2 on smooth boundaries and c � 1

4 at boundary
corners with interior angle p=2: We assume that the inlet and outlet to the pipe are su�ciently
far from the Venturi such that the ¯ow is close to uniform, with jn � rFj � U: On the walls of
the pipe n � rF � 0: Thus, we have a Neumann problem and F can be found on the boundary
S by solving the integral equation (41), with angular integration over the surface S performed
analytically. Once F is known over the boundary, then F can be obtained within the interior of
O by evaluating the integral (41): this requires ®rst derivatives of the Green's function ~F: To
obtain the velocity ®eld u � rF, we therefore require second derivatives of ~F, and to obtain
the gradient of the velocity ®eld required to evaluate the added mass Fa (2), we need third
derivatives of ~F: The angular integration of these derivatives entails considerable algebra.
We take the simple Venturi of Section 3.1 with b � 1

2 and total length x5 � 13:5: The
entrance and exit to the pipe were discretised as 21 points spaced equally over [0, 1]. The pipe
wall was represented by 901 points interpolated by splines. This interpolation had the e�ect of
rounding the corners of the converging, throat and diverging sections of the Venturi, thereby
avoiding singularities in the solution of the Laplace equation (39). Fig. 6 shows the liquid
velocity along the centreline of the pipe and at the wall as a function of the axial position. The
wall velocity is large, but ®nite, at the rounded corners at the beginning and end of the throat.
The total volumetric ¯ow rate

ql�x� � 2p
�Rp

0

rux�x, r� dr �42�

across the pipe cross-section should be equal to p at all axial positions x, and this was used to

Fig. 7. The position of marked ¯uid particles, initially at x � 1 at time t � 0, at times: (a) t � 2:0; (b) t � 2:5; (c)
t � 3:0; (d) t � 3:5; (e) t � 3:7; (f) t � 3:8; (g) t � 4:0; (h) t � 4:5; (i) t � 5:0; (j) t � 5:5:
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check the accuracy of the scheme. Errors in ql were at most 0.6% and were greatest at the
beginning and end of the throat, where wall velocities are large. More generally, numerical
problems due to the ®nite discretisation of the boundary were encountered when computing
velocities close to the walls of the pipe. When the representation of the boundary was re®ned
such problems were reduced, and for the discretisation used here were restricted to a region r >
0:98Rp:
Fig. 7 shows the motion of a line of marked ¯uid particles, initially at x � 1 at time t � 0:

Fluid particles near the wall are held up by the corners at the entrance and exit to the Venturi,
but speed up at the entrance and exit to the throat. Even so, the net result is that such particles
take longer to pass through the Venturi than those on the centreline. By starting the
computations at x � 1, rather than at x � 0, we avoid any inaccuracies in the computed
velocity ®eld close to the boundary of the ¯ow domain. The ®gure shows half of the pipe, with
the Venturi centreline along the x-axis.

4.2. Motion of a bubble in the absence of drag

Having obtained a representation for the liquid velocity ul within the Venturi, we may
determine the trajectories of bubbles which initially lie o� the axis. Eq. (15) was integrated by
means of the NAG routine D02CJF (a variable step Adams method). Throughout Section 4
we assume that viscosity is negligibly small, so that we set Md �Mls � 0 and neglect both drag
and lift. Since we neglect interactions between the bubble and the walls of the pipe, we assume
not only that the bubble radius R0 is small compared to the pipe radius Rp, as in Section 3,
but also that R0 is small compared to the distance of the bubble from the wall.
In general, we followed trajectories from x0 � 1 until the bubble reached the outlet of the

pipe. However, problems were encountered when the bubble was near either the pipe wall or
the axis of the pipe. Although no di�culty was encountered on the axis itself, numerical
evaluation of the liquid velocity was poor at radial positions 0 < r < 10ÿ4 and it was no longer
possible to integrate the di�erential equations for the bubble trajectories in this region. This
problem was avoided by a simple extrapolation of the trajectory across the axis.
If a bubble hits the pipe wall we need a physical understanding of its subsequent behaviour.

Although bubbles have been observed to bounce at solid walls when the liquid is at rest (Tsao
and Koch, 1997), in a real Venturi there will be a viscous boundary layer, within which
bubbles may be trapped by lift forces (8) which are absent in the irrotational ¯ows considered
here. We chose to stop the computation of any trajectory at the point where it reaches the pipe
wall. This has implications for the conservation of bubbles. However, it will be shown later
(Fig. 11) that bubbles hit the pipe wall only downstream of the throat and the fraction of
bubbles removed by such impacts remains small.
Fig. 8 shows the trajectories of bubbles which start at various initial radial positions r0. The

®gure shows a plane (x, y ) cross-section on which lics the centreline y � 0 of the Venturi. Only
trajectories which start in yr0 are shown. If a bubble starts on the axis of the Venturi it
remains on the axis, but in general bubbles do not follow the liquid stream-lines. At the start
of the converging section of the Venturi the liquid accelerates inwards towards the axis, and
the bubbles, which have only half the inertia of the liquid they replace, accelerate more rapidly.
At the end of the converging section, the radial velocity of the liquid decreases in magnitude
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and returns ultimately to zero. However, although the radial velocity of the bubbles decreases,
it does not become zero. The bubbles eventually cross the pipe axis and hit the opposite wall.
We see from Fig. 9 that the further a bubble is initially from the axis of the pipe, the more
rapidly it is accelerated towards the centre of the pipe and towards the opposite wall. At the
throat of the Venturi, the bubbles are concentrated in the centre of the pipe �rR0:2). A
maximum in gas volume fraction close to the axis in the throat has been observed

Fig. 8. Trajectories of bubbles passing through a Venturi. The only forces acting on the bubbles are dynamical
pressure and added mass forces.

Fig. 9. Axial velocity vx - - - -, and transverse velocity vy ÐÐÐ of bubbles ¯owing through the Venturi from three
di�erent initial radial positions: (a) r0 � 0; (b) r0 � 0:5; (c) r0 � 0:9:
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experimentally by Thang and Davis (1979), and similar computations of trajectories which
cross the axis have been reported by Kim and Prosperetti (1992).
Fig. 9 shows the velocity components �vx, vy� of a bubble as it ¯ows through the Venturi.

The axial velocity vx is maximum in the centre of the throat, but does not depend strongly on
the initial radial position r0. The transverse velocity vy, however, depends strongly on r0.

4.3. The radial distribution of bubbles

We assume that there are no interactions between bubbles, so that the evolution of bubble
volume fraction as a function of axial position may be determined by computing the
trajectories of individual bubbles. We write the gas volume fraction ag in the form

ag�x, r� � a0P�x, r�: �43�
In the computations presented here, we assume that upstream of the Venturi, at x0, the volume
fraction ag � a0 is uniform across the pipe, so that

P�x0, r� � 1: �44�
However, it would be straightforward to determine the evolution of more complicated, non-
uniform upstream gas volume fractions.
If a bubble which starts at (r0, x0) passes through (x, r1), we may represent this trajectory by

a function

g�r0; x� � r1: �45�
Bubble trajectories starting at various radial positions r0 were computed, and intermediate

Fig. 10. Radial position r1 � g�r0� of the bubble as a function of the initial position r0, at various axial positions x.
(a) x � 2:5; (b) x � 4; (c) x � 6; (d) x � 8; (e) x � 11:
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values of g were interpolated by means of cubic splines. Typical results for g are shown in
Fig. 10. Note that when x > 3.8, the function g�r0� is no longer monotonic. Wherever
trajectories intersect one another, the inverse function gÿ1�x, r1� � r0 is multiple valued. In
Fig. 8, we see points at which two trajectories intersect. However, there are also trajectories, in
the plane of the ®gure but not shown, which start at y0 < 0: Thus, gÿ1 can take up to three
values. If bubbles had been allowed to re-bound from the walls, the function gÿ1 would have
been even more complicated. Su�ciently far downstream almost all trajectories have crossed
the centre-line, as seen in curve (e) of Fig. 10.
We now seek an equation for the evolution of P�x, r1�: Since the bubbles are assumed

incompressible, in steady state the volume ¯ux of bubbles

qg � 2p
�Rp

0

r1ag�x, r1�vx�x, r1� dr1 �46�

is independent of x, with qg � pa0 since we have assumed P�x0, r0� � vx�x0, r0� � 1: More
speci®cally, we may consider bubble trajectories which start in the range �r0, r0 � dr0� at
x � x0, and are to be found in the range �r1, r1 � dr1� at x. Then,

r1 � dr1 � g�r0, x1� � @g

@r0
dr0: �47�

If we assume for the moment that all the bubbles in �r1, r1 � dr1� come from �r0, r0 � dr0), then
by conservation of bubble ¯ux

r0ag�x0, r0�vx�x0, r0�dr0 � r1ag�x, r1�vx�x, r1�jdr1j �48�
where we have to take jdr1j in Eq. (48) since r1 may be a decreasing function of r0 at the point
in question. Hence, by Eqs. (47) and (48)

ag � a0P�x, r1� � a0P�x0, r0�r0vx�x0, r0�
g�r0, x�

��� @g@ r0 ���vx�x, r1� : �49�

More generally, since gÿ1 is many-valued there can be several trajectories, starting at di�erent
r0, which pass through the same point at �x, r1). Their contributions to ag at x will be additive.
We have already seen in Fig. 9 that bubbles hit the walls of the Venturi and, as explained
above, trajectory calculations were not continued beyond the point of impact. The larger the
initial radial position r0 of the bubble, the smaller the value of x at which impact occurs. We
may determine the initial radial position rl

0 of the bubble which impacts the wall at any given
point x by solving

rl
0�x� � gÿ1

ÿ
x, Rp

�
: �50�

The volume ¯ux of bubbles which has been lost (through wall impact) at an axial position x is

qlost
g �x� � 2p

�Rp�x 0 �

rl
0�x�

rag�x0, r�vx�x0, r� dr � a0p
h
1ÿ ÿrl

0�x�
�2i
: �51�
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Fig. 11 shows qlost
g =a0p as a function of the axial position x. Bubbles begin to hit the walls at

x � 7:3, downstream of the end of the Venturi throat �x3 � 6:7), and qlost
g increases thereafter

approximately linearly with x.
In Fig. 8 we can see a region close to the wall of the Venturi that is devoid of bubbles. This

is separated from the region containing bubbles by the envelope of the trajectories. This
envelope corresponds to the maximum in g�r0, x� which can be seen in Fig. 10. We de®ne rf�x�
to be the value of r0 at which this maximum occurs, i.e.

@g�r0, x�
@r0

����
r0�rf

� 0: �52�

The gas hold-up ag (49) is singular at rf : This implies that the local bubble volume fraction will
be high, however small a0 may be. At such locations, bubble interactions should no longer be
neglected. Care is required when integrating the volume ¯ux of bubbles qg (46) across the
singularity at r0 � rf :
There is a similar problem at the axis. If bubbles from a region r0 < r < r0 � dr0 at x0 pass

through a region 0 < r < dr1 on the axis at x, there will be an in®nite (but integrable) volume
fraction of bubbles on the axis. This corresponds to g�r0, x� � r1 � 0 in the denominator of Eq.
(49). Fig. 12 shows rP�x, r� (which by Eq. (49) is well behaved at r � 0� at various axial
positions x along the pipe.
Once both the convected volume ¯ux qg (46) and the lost volume ¯ow qlost

g (51) have been
computed, we may check the conservation of bubble volume ¯ux along the pipe. Errors were
smaller than 1% at all points investigated.
Another way to indicate the distribution of bubble volume fraction across the cross-section

of the pipe, while avoiding the visual confusion of integrable singularities, is to compute the
cumulative contribution to gas hold-up from the axis out to a radius r < Rp as a function of r.
Thus, we may de®ne

Fig. 11. Fraction of bubbles which have hit the pipe wall, as a function of the axial position x.
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aP
g�x, r� �

2

R2
p

�r
0

r1ag�x, r1� dr1: �53�

Fig. 13 shows aP
g=a0 as a function of r, at various axial positions x along the pipe. Note that in

some cases aP
g increases (albeit slowly) with r when r > g�rf�: This is due to the presence of

bubbles which originated on the far side of the axis and which have subsequently migrated
across almost the entire width of the pipe. Conservation of volume requires that the gas

Fig. 12. Gas volume fraction ag scaled by a0 and multiplied by r1, as a function of radial position r1. (a) x � 2:5; (b)
x � 4; (c) x � 6; (d) x � 8; (e) x � 11:

Fig. 13. Integrated gas volume fraction aP de®ned by Eq. (53). (a) x � 2:5; (b) x � 4; (c) x � 6; (d) x � 8; (e)
x � 11:
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volume fraction ag decreases within the throat, where bubbles travel faster than the liquid, and
so aP

g�x, Rp�R1 even when no bubbles have hit the walls of the pipe.
Similarly, we de®ne the partial ¯ux of bubbles qP

g over a cross section of radius r:

qP
g�x, r� �

�r
0

r1ag�x, r1�vx�x, r1� dr1: �54�

Fig. 14 shows qP
g=pa0 as a function of r, for various values of axial position x. Note that when

x > 7:3 the ¯ux qg � qP
g�x, Rp� < 1, since some bubbles have already hit the walls.

5. The e�ect of drag on bubble trajectories in potential ¯ow

5.1. The e�ect of drag on trajectories on the axis

When the bubble is on the axis, numerical solutions of the full one-dimensional equation
(21), using the potential ¯ow velocity, predict oscillations for 0:061RMdR2:84: This may be
compared to the oscillation range 0:056RMdR2:92 found in Section 3.2 assuming that the
liquid velocity ul (20) is uniform over the pipe cross-section. We see from Fig. 6 that the
velocity at the pipe wall di�ers from that along the centreline only at the sharp corners of the
pipe. The uniform velocity (20) is therefore a good approximation to the centre-line velocity
for potential ¯ow. Fig. 15 shows the position of the bubble as a function of time when
Md � 0:115, together with the shape of the Venturi. Note that the bubble velocity reverses at
x � 11, somewhat downstream of the end of the diverging section x4 � 10:5: As seen in Fig. 6,
the potential ¯ow velocity does not immediately become uniform downstream of the diverging
section. Fig. 16 shows the bubble velocity corresponding to the results of Fig. 15. Note that the

Fig. 14. Integrated gas volume ¯ow rate qP
g de®ned by Eq. (54) at various axial positions x. (a) x � 2:5; (b) x � 4;

(c) x � 6; (d) x � 8; (e) x � 11:

J. Soubiran, J.D. Sherwood / International Journal of Multiphase Flow 26 (2000) 1771±1796 1791



oscillation is now much closer to the simple harmonic motion predicted in Section 3.3 for a
smooth velocity pro®le than to the asymmetric oscillations (Fig. 4) predicted with the one-
dimensional liquid velocity (20).

5.2. The e�ect of drag on trajectories o� the axis

In Section 4, we computed the trajectories of bubbles in a Venturi in the absence of drag,
using the potential ¯ow velocity ®eld. We now repeat these computations and include drag.

Fig. 15. The position x b of the bubble as a function of time t, computed using the potential ¯ow velocity along the
centreline. Md � 0:115: The dotted line indicates the shape of the Venturi.

Fig. 16. The velocity vb of the bubble in Fig. 15.
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Fig. 17 shows trajectories without drag. When a small amount of drag �Md � 0:036� is
introduced, the trajectories change only slightly.
If drag is increased, the results of Section 5.1 indicate that oscillations will occur on the

centre-line. O� the centre-line, the axial velocity of the bubble reverses, as seen in Fig. 18 for
Md � 1 and 2. However, the bubbles have a non-zero radial velocity. They move towards the
walls and, in particular, towards the low pressure (high liquid velocity) regions near the corners
at the start and end of the throat. Computations were stopped once the bubbles reach the wall,
and the oscillations do not survive for long.
If drag is increased further, the bubbles are carried through the Venturi by the liquid and

Fig. 17. Bubble trajectories: ÐÐÐ Md � 0 (no drag); - - - - - with drag Md � 0:036:

Fig. 18. Bubble trajectories: ÐÐÐ Md � 2; - - - - - Md � 1:
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oscillations cease. The greater Md becomes, the closer the bubbles follow the liquid streamlines
(which have fore-aft symmetry), as seen in Fig. 19.
In Section 2, the strain lift force Fls was discussed. Although this force is small compared to

the pressure and added mass forces, it is not clear that it is reasonable to neglect Fls while
allowing a drag force Fd to act. If we assume that strain rates typically have magnitude U=a,
so that non-dimensional strain rates are O(1), then lift is large compared to drag if Mls �Md,
i.e. if

Re� 21=2jul ÿ vbj1=2
R5=2

0

�
18

4:8

�3=2

110jul ÿ vbj1=2
R5=2

0

, �55�

where the non-dimensional velocity di�erence jul ÿ vbj is O(1) (or more precisely O�bÿ2� within
the throat), or smaller if drag is large. The inertial forces are much greater than the lift forces
if Ma �Mlsjul ÿ vbj i.e. if

Re�
�
4:8

3

�3 jul ÿ vbj2
2R0

12jul ÿ vbj2
R0

: �56�

Since R0 � 1, this simple order of magnitude estimate suggests that the lift forces will only be
larger than drag when the Reynolds number Re is su�ciently large such that both lift and drag
are negligible. If lift is larger than drag because jul ÿ vbj is small, then both lift and drag can
be neglected compared to inertial forces. However, this argument must be treated with care.
Strain rates are larger than O�U=a� in the neighbourhood of the corners at the start and end of
the throat, and lift forces are not collinear with drag. Fig. 20 shows trajectories with Md � 3:6
and Mlsjul ÿ vbj1=3 � 0:48, corresponding to ~R0 � 0:5 mm, ~a � 5 cm, ~U � 1 m sÿ1, ~rl � 103 kg
mÿ3, and ~m � 10ÿ3 Pa s. Trajectories computed without lift di�er from those with lift, but the
di�erence is small and can be seen only within the throat. A bubble which oscillates (or

Fig. 19. Bubble trajectories: - - - - - Md � 180; ÐÐÐ Md � 1800:
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attempts to do so) moves slowly in the throat, and this allows the lift force to act for a
su�ciently long time to have a noticeable e�ect. In practice, if the bubble is no longer
spherical, the lift coe�cient will no longer be given by Eq. (12).

6. Concluding remarks

The oscillations described in Sections 3.2 and 5.1 have not (to our knowledge) been
observed. As discussed in Section 3.4, one possible explanation is the likely deformation (and
breakup) of bubbles within the Venturi due to high Weber numbers. The Levich drag (20) is
unlikely to be appropriate: indeed, if oscillations occurred it is possible that any steady drag
law would be inappropriate. Moreover, if a ¯uid with exceptionally high interfacial tension
were found (so that bubbles remain spherical), it is clear from the computations of Section 5.2
that any perturbation away from the centreline would quickly cause bubbles to move to the
walls of the Venturi.
Simple models of two-phase ¯ow through a Venturi make various assumptions concerning

the amount of mechanical coupling, via interaction forces, between the gas and liquid. One
extreme assumption is that of complete separation, in which gas and liquid independently
satisfy Bernoulli's equation and ¯ow at quite di�erent velocities. Another extreme case is that
in which slip between the liquid and gas is assumed to be zero, and the pressure drop is that
due to a homogeneous ¯uid with the mean mixture density. Predictions of the pressure drop
within a Venturi for these two cases di�er, and it is therefore important to understand the
degree of radial separation of the two phases.

Fig. 20. Bubble trajectories, Md � 3:6: - - - - - with lift force Mlsjul ÿ vbj1=3 � 0:48; � � �� � � without lift force �Mls � 0).
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